Thoughts on Teaching MBSE

Rick Steiner, ESEP, Lecturer
Joe Gregory, PhD, CIRTL* Postdoc Fellow
Mitchell Kirshner, PhD Candidate

Prepared for: US Army DEVCOM AVMC S3I MBSE Forum 15 March 2023

Contents

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

Introduction to UofA Course SIE 458/558 Model Based SE

taken from 'MBSE - Lecture 1'

- This class is intended to introduce you to the value and practice of Model Based Systems Engineering (MBSE)
 - It is only an introduction. You will not be "qualified" as a system modeler by taking this class.
- The value of MBSE:
 - Increased quality, relevance, and traceability of system engineering being performed
 - May extend well beyond the systems engineering organization
- The practice of MBSE relies on:
 - Language: The Systems Modeling Language (SysML) is the dominant language for MBSE.
 - Tool: You must use a SysML authoring tool in this class.
 - Methodology: You will incrementally apply MBSE techniques in modeling your individually-selected class project.
 NOTE: This class will be consistent with <u>SIE 454/554</u>
- To understand MBSE, you must build system models
 - Your modeling assignments will make up the bulk of your grade

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

Teaching MBSE

- Successful MBSE requires systems engineering thinking
 - (systems thinking applied to engineering)
- Language/tool/method
 - SysML 1x has breadth (if not rigor) for entire SE lifecycle
 - Students can learn tools faster than instructors can teach them
 - Tool Helps availability for students that need them
 - Method: taught through conventions & staged goals/criteria
- Learning MBSE through building models
 - Working through an end-to-end project will illustrate SE better than pre-staged modeling problems.
- LMS as a learning environment
 - Calendar, announcements, lectures, assignments, discussions
 - Availability of deeper resources

Beginning MBSE Class Approach

Senior/graduate student, single semester (SIE 458/558)

- Individual, not team assignments
 - Need for consistency in understanding concepts
- Project-based assignments
 - Subject chosen by student, approved by instructor
 - Broad enough to exercise SE concepts, but do-able in one semester
 - Sensor-Control-Effector type systems tend to work well, software or hardware only systems tend not to work well.
 - Each modeling assignment builds on the previous one
- Cover the scope of MBSE
 - Concept through validation
 - Experience 4-Pillars of SysML (Structure, Behavior, Requirement, Parametric modeling)
 - Experience model query, requirements traceability, model cohesion
- LMS as a learning environment
 - Week-by-week modules, with checklist, lecture video, assignments
 - Mandatory discussion topics (open ended, thought provoking)
 - Availability of deeper resources for enthusiastic students
- Grade Recovery
 - Extra credit quizzes

Teaching MBSE

- Students benefit from a wide range of learning styles.
- It has been recommended that instructors incorporate a range of teaching styles in their classroom [1], [12].

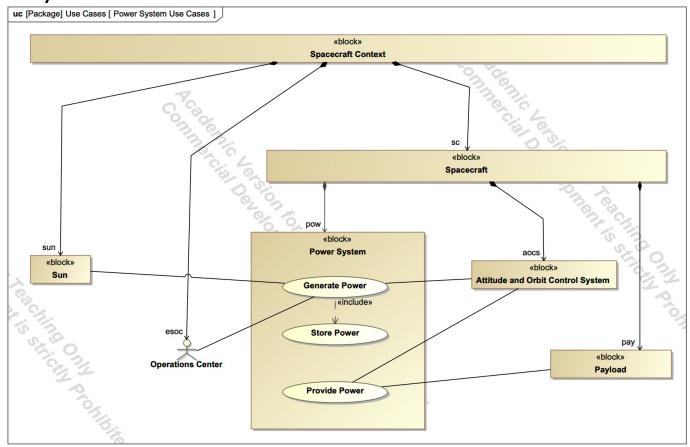
Our UA MBSE course incorporates:

- Instructional
 - traditional classroom style to present terms and concepts
- Examples
 - present examples of application in other work
- Interactive demos
 - build a model in the classroom together
- Discussions
 - ask students to participate in discussions regarding a topic (e.g. the applicability of a particular modeling approach)
- Independent study
 - Allow students to work independently (alone or in groups) outside of the classroom

Teaching MBSE

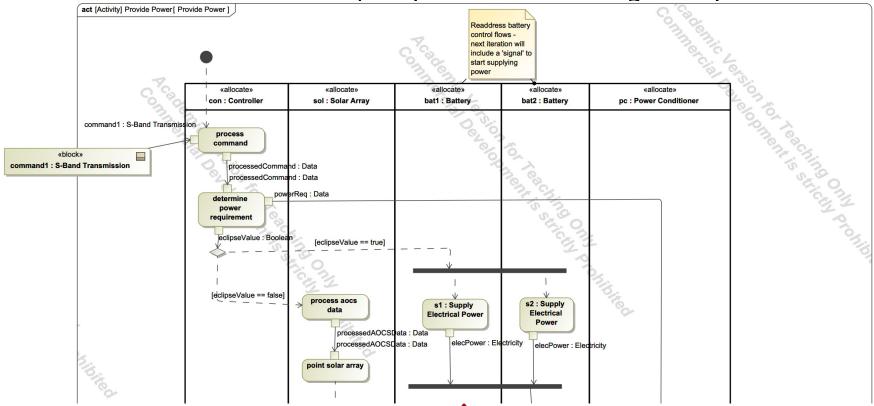
Progressive assignments outline a typical systems engineering method

- Mission Need Statement
 - Free-form text
 - The basis for system requirements
- Modeling Assignment #1
 - Framing the system context & mission need
- Modeling Assignment #2
 - Elaborating system structure, requirements, behavior & analysis approach
- Modeling Assignment #3
 - Completing the design: interfaces, interactions, and requirement traceability.

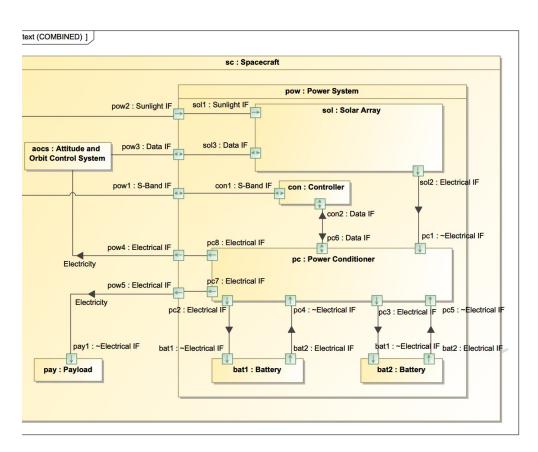

Mission Need Statement

- Forces students to describe the problem or need, rather than the solution
- Some students may struggle with this... and that's OK
 - Concept/problem definition, system boundaries, user goals ... rarely taught in most undergraduate engineering curricula

#	Name	Text	Refined By	△ Derived		
1	☐ ☐ 1.1 Mission Need					
2	MNS1 Mission Need Statement	Low-Earth Orbit (LEO) spacecraft need to be able to generate enough power to support nominal operations while in sunlight, and when in eclipse.				
3	MNS1.2 Eclipse	Spacecraft need to be able to generate enough power to support nominal operations while in eclipse		R MR2 While in Eclipse		
4	MNS1.1 Sunlight	Spacecraft need to be able to generate enough power to support nominal operations while in sunlight		R MR1 While in Sunlight		
5	☐ 1.2 Mission Requirements	10".11 k.				
6	■ MR1 While in Sunlight	The power generated by the spacecraft shall be greater than the power required for nominal operations when in sunlight	Provide Power	SR1 Generate Power from Sun		
7	■ MR2 While in Eclipse	The power generated by the spacecraft shall be greater than the power required for nominal operations when in eclipse	Provide Power	SR2 Store Power in Batteries SR3 Provide Power from Batteries		


Modeling Assignment #1

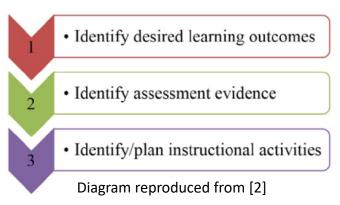
 Model organization, system context (black box), mission need statement & requirements, mission level use case analysis



Modeling Assignment #2

- Continued model organization & consistency
- Attribute values & parametric models, use case activity modeling, internal system structure, system states & common behaviors, requirements linkage & updates

Modeling Assignment #3



- Cumulative model organization, requirement traceability, consistency
- Interactions/sequences, state & activity model updates
- Instance values & parametric analysis update
- Internal & external interface management, flow definition

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

Backwards Design

- Combined effect of:
 - Learning outcomes
 - Assessments
 - Instructional materials / activities

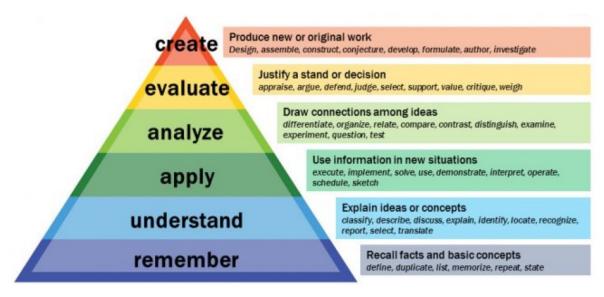

Clear structure helps to motivate students [3]

Table 1: Abridged summary of backwards design approach to MBSE course

Learning Outcome	Assessment	Instructional Activities				
Understand the value of MBSE	Discussion questions	Present examples from industry and academia				
Practical Application of MBSE	Requirements model	Requirements elicitation, modeling demo				
	Use case model	Use case elucidation, modeling demo				
	Structural model	Black box and white box, modeling demo				
	Behavioral model	Activities, states and sequences, modeling demo				

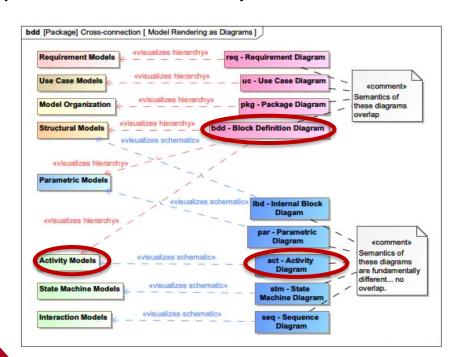
Backwards Design

Learning outcomes that span Bloom's taxonomy:

- Example from `MBSE Lecture 14: Activity Modeling':
 - Understand how activities use actions, nodes and flows to define behavior
 - Apply swimlanes to allocate behavior
 - Create an 'act' (schematic diagram) to model your system behavior

Flipped Classroom

- Move easier tasks (introductory reading) outside of class.
- Save class time to work on more challenging problems / applications
- The most frequently reported advantage of the flipped classroom is the improvement of student learning performance [5].
- Major challenge is inadequate student preparation prior to class [5].


Table 2: Summary of our semi-flipped classroom approach

	Before Class	During Class	After Class	
Traditional approach	-	Intro to concepts	Problems (as homework)	
Flipped classroom approach	Intro to concepts	Problems	Further exploration	
Our semi-flipped approach	Reading (Intro to concepts)	Intro to concepts Problems	Problems (as assignments)	

Mental Models

- Diagrams (particularly simple diagrams) support students in factual learning [6].
- This approach can be applied to the course syllabus it can help students to "grasp key information about a course" [7].
- We can use diagrams to support our textual syllabus.

- Student motivation can be:
 - extrinsic (e.g. reward-based), or
 - intrinsic (from within) [8].
- It has been reported that intrinsic motivation leads to better long-term learning than extrinsic motivation [9].

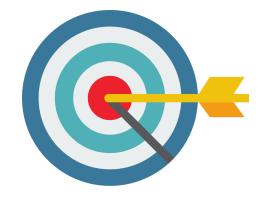
"Education is not the filling of a bucket, but the lighting of a fire"

W. B. Yeats

- Techniques can be employed to foster intrinsic motivation [10], [11]:
 - Competence i.e. content pitched at the correct level
 - Community
 i.e. make the classroom a learning community
 - Autonomy
 i.e. allow students autonomy in their work
 - Authenticity i.e. provide an authentic audience for work
 - Purpose
 i.e. potential future roles, relevant current work
 - Lower Stakes i.e. encourage participation with low-stakes assignments
- Some examples to follow:

Community

- Discussion
 - Discussion forums to encourage students to discuss SE ideas with each other.
- Collaborative
 - Instructor-led demonstrations in which students put forward modeling suggestions.
- Peer feedback
 - An assignment in which students are tasked with grading models submitted by peers



Authenticity

- Mirror Typical SE Process
 - Students work through an end-to-end SE process that mirrors a typical SE process
- Examples
 - Students are presented with examples to demonstrate that the concepts they are learning are used in academia and industry

Purpose

- SE Importance
 - The importance of Systems Engineering as a discipline can be an introductory topic.
 - The benefits / challenges of MBSE can be a good topic for a discussion question.
- Infamous Examples
 - Examples can be provided re: `when SE goes wrong...'
- Current Work
 - Examples of current work can be presented in each class.
 - i.e. "here is the current state-of-the-art to which you may wish to contribute"

Lower Stakes

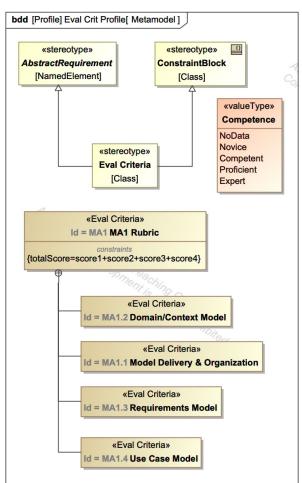
- Discussion Questions
 - Discussion questions are graded (low stakes).
 - They provide a low-risk incentive for students to contribute to the learning environment.
- Modeling Assignments
 - Three modeling assignments are graded over the course.
 - Each builds on the previous.
 - Students have the opportunity to correct previous mistakes for extra credit.
- Quizzes
 - Automated grading, multiple attempt
 - Good for grade recovery, while still demonstrating learning


Autonomy

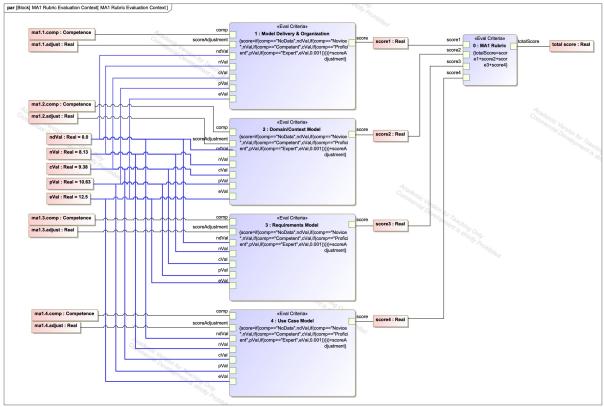
- Modeling Assignment Ownership
 - Students choose the subject of the modeling assignments.
 - Allows students to take ownership of their work.
 - Students are able to model something they are interested in.

"People learn new material most effectively when they perceive a clear need to know it in order to solve a problem or meet a challenge" [12]

- Problem-Based Learning
 - Students given significant problem.
 - Students identify what they need to know
 - Students independently
 - Cognitive and motivational benefits in engineering [14], [16]
- Project-Based Learning (right)
 - Similar to Problem-Based Learning
 - Less instructional than Problem-Based Learning

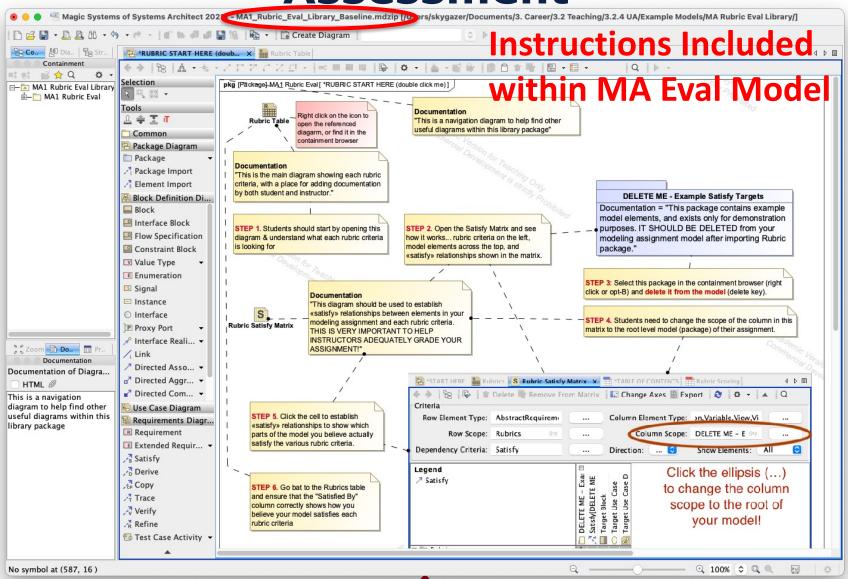

"The use of project-based learning as a key component of engineering programs should be promulgated as widely as possible, because it is certainly clear that [this] would be welcomed by students, industry and accreditors alike" [15]

Modeling Assignments - Overview


- Part 'Problem-Based', part 'Project-Based'
- Three modeling assignments
 - each building on the previous
 - MA1: Students define a problem that their system will address
 - MA2: Students define the black-box system
 - MA3: Students define the white-box system
 - MA4 (grad students only): Students critique peer submissions

Modeling Assignments - Grading Rubric Model

- Property-based requirement (rubric criteria with grade)
- «satisfy» relationship between rubric criteria and model element/diagram that meets the criteria
- Student imports rubric model into their project model, then describes how each criteria is met.
- Instructor reviews rubric table, provides detailed feedback, and executes parametric model for grading.
- Model review tables & matrices
 - Meta-chain queries are particularly useful
- Next step: server-based assessment
 - Collaboration environment (interactive wiki)
 - Report design & generation (pdf, web)
 - Metrics package & tracking


Eval Criteria is a property-based requirement, rubric scores calculated using parametric model.

#	△ Name	total score	max score	ma1.1.comp	ma1.1.adjust	ma1.2.comp	ma1.2.adjust	ma1.3.comp	ma1.3.adjus	ma1.4.comp	ma1.4.adjust
1	□ ma1 eval1	44.64	50	Proficient	0	Proficient	0	Expert	0	Proficient	0.25

Modeling Assignment Rubric Eval Library

- Separate model of the grading rubric for each modeling assignment
 - Property-based requirement (rubric criteria with grade)
 - Parametric model for calculating grade
- Student imports rubric model into their project model, then describes how each criteria is met.
- Student creates «satisfy» relationship between rubric criteria and model element/diagram in their model that they that meets the criteria
- Instructor reviews rubric table once assignment submitted, provides detailed feedback, and executes parametric model for grading.

Modeling Assignments – Closing the Loop

- "Encouraging self-reflection on strengths and weaknesses is an essential factor in training reflective practitioners" [17].
- Students have the opportunity to implement feedback
 - i.e. correct / improve subsequent modeling assignments.
 - Students receive extra credit for doing this.
- Benefits of Formative Feedback [18].

Discussion Questions

- As previously mentioned, low-stakes points are available.
 - Discussion questions incentivise participation with low risk.

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

Notes for Improvement

- Greater elicitation of prior knowledge
- More examples of real-world applications / projects
- Collaboration (e.g. group projects with individual responsibilities)
- IDE, DE Factory

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

Advanced Topics

- Model information sharing
 - Document/web generation & understandability
 - Interactive portals & access to information
- Model metrics, maturity, and trend analysis
 - MOE, MOP, KPP, TPM, quality
- Model based design & readiness reviews
 - Collaborative & non-collaborative environments
 - Review readiness metrics
- Integrated development environments & program needs
 - System-Mechanical (MCAD), System-Software (CASE), System-Electrical (ECAD) model interfaces
 - Role of System model in Integration, Verification & Support
 - Role of System model in Reliability, Maintainability, Availability & Safety
- Closed-loop whole-system trade & optimization studies

- Introduction to UA MBSE Course
- Teaching MBSE
- Active Learning Principles Applied to MBSE
 - Backwards Design
 - Flipped Classroom
 - Mental Models
 - Motivation
 - Assessment
- Notes for Improvement
- Advanced Topics
- Open Questions

Is Object-Oriented Necessary?

- Yes: SysML 1.x is (mostly) a strongly-typed language.
 - Classifer (e.g. Block) has property (e.g. part property, value property)
 - Properties have no properties themselves... only inherit from type/called classifier
 - System context established via properties of a higher-level classifier (how is the Block used?)
- No: SysML 2.x typing is optional
 - Usage focused: modeling can be done with parts, actions, requirements, interfaces, without definitions. Properties can have their own properties and be reused directly in other properties.
 - Object focused: definitions (e.g. PartDef) can establish "Black Box" characteristics, for specification or tradeoff analysis
- So, should teaching MBSE using SysML 2 include Object Oriented principles or not?
 - It has been a stumbling block for many non-software students.

References

- [1] Marton, F. and Säljö, R., 1976. On qualitative differences in learning: I—Outcome and process. *British journal of educational psychology*, 46(1), pp.4-11.
- [2] Pusca, D. and Northwood, D.O., 2015. How to engage students in the context of outcome-based teaching and learning. *World Trans. on Engag. and Technol. Educ*, 13(3), pp.268-273.
- [3] Alenezi, H., 2015. Learning as the prize: Enhancing students' intrinsic motivation through backward design. *The International Journal of Pedagogy and Curriculum*, 23(1), p.1.
- [4] Armstrong, P. (2010). Bloom's Taxonomy. Vanderbilt University Center for Teaching. Retrieved [03/07/2023] from https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/.
- [5] Akçayır, G. and Akçayır, M., 2018. The flipped classroom: A review of its advantages and challenges. *Computers & Education*, 126, pp.334-345.
- [6] Butcher, K.R., 2006. Learning from text with diagrams: Promoting mental model development and inference generation. *Journal of educational psychology*, 98(1), p.182.
- [7] Yerian, K., 2009. Using a Graphic Syllabus with Second Language Learners. ORTESOL Journal, 27, p.9.
- [8] Bomia, L., Beluzo, L., Demeester, D., Elander, K., Johnson, M. and Sheldon, B., 1997. The Impact of Teaching Strategies on Intrinsic Motivation.
- [9] Lam, S.F., Cheng, R.W.Y. and Ma, W.Y., 2009. Teacher and student intrinsic motivation in project-based learning. *Instructional Science*, 37, pp.565-578.
- [10] Frymier, A.B. and Shulman, G.M., 1995. "What's in it for me?": Increasing content relevance to enhance students' motivation. *Communication Education*, 44(1), pp.40-50.
- [11] Mikalayeva, L., 2016. Motivation, ownership, and the role of the instructor in active learning. *International Studies Perspectives*, 17(2), pp.214-229.
- [12] Felder, R.M. and Brent, R., 2004, June. The ABC's of engineering education: ABET, Bloom's taxonomy, cooperative learning, and so on. In *Proceedings of the 2004 American society for engineering education annual conference & exposition (Vol. 1)*. American Society for Engineering Education.
- [13] Gold Standard Project Design. Retrieved [03/07/2023] from https://www.pblworks.org/what-is-pbl/gold-standard-project-design
- [14] Perrenet, J.C., Bouhuijs, P.A. and Smits, J.G., 2000. The suitability of problem-based learning for engineering education: theory and practice. *Teaching in higher education*, 5(3), pp.345-358.
- [15] Mills, J.E. and Treagust, D.F., 2003. Engineering education—Is problem-based or project-based learning the answer. *Australasian journal of engineering education*, 3(2), pp.2-16.
- [16] Frank, M., Lavy, I. and Elata, D., 2003. Implementing the project-based learning approach in an academic engineering course. *International Journal of Technology and Design Education*, 13, pp.273-288.
- [17] Ramani, S., 2016. Reflections on feedback: closing the loop. *Med Teach*, 38(2), pp.206-207.
- [18] Shute, V.J., 2008. Focus on formative feedback. Review of educational research, 78(1), pp.153-189.